Mirror Symmetry of Fourier-Mukai transformation for Elliptic Calabi-Yau manifolds

نویسندگان

  • Naichung Conan Leung
  • Shing Tung Yau
چکیده

Mirror symmetry conjecture identi…es the complex geometry of a CalabiYau manifold with the symplectic geometry of its mirror Calabi-Yau manifold. Using the SYZ mirror transform, we argue that (i) the mirror of an elliptic Calabi-Yau manifold admits a twin Lagrangian …bration structure and (ii) the mirror of the Fourier-Mukai transform for dual elliptic …brations is a symplectic Fourier-Mukai transform for dual twin Lagrangian …brations, which is essentially an identity transformation in this case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffeomorphisms and families of Fourier–Mukai transforms in mirror symmetry

Assuming the standard framework of mirror symmetry, a conjecture is formulated describing how the diffeomorphism group of a Calabi–Yau manifold Y should act by families of Fourier–Mukai transforms over the complex moduli space of the mirror X. The conjecture generalizes a proposal of Kontsevich relating monodromy transformations and selfequivalences. Supporting evidence is given in the case of ...

متن کامل

Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)

In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...

متن کامل

Mirror Symmetry and Self-dual Manifolds

We introduce self-dual manifolds and show that they can be used to encode mirror symmetry for affine-Kähler manifolds and for elliptic curves. Their geometric properties, especially the link with special lagrangian fibrations and the existence of a transformation similar to the Fourier-Mukai functor, suggest that this approach may be able to explain mirror symmetry also in other situations.

متن کامل

Mirror symmetry without corrections

We give geometric explanations and proofs of various mirror symmetry conjectures for T-invariant Calabi-Yau manifolds when instanton corrections are absent. This uses fiberwise Fourier transformation together with base Legendre transformation. We discuss mirror transformations of (i) moduli spaces of complex structures and complexified symplectic structures, Hp,q’s, Yukawa couplings; (ii) sl (2...

متن کامل

Doran–Harder–Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

We prove the Doran–Harder–Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi– Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi–Yau manifold of X can be constructed by gluing the two mirror Landau– Ginzburg models of the quasi-Fano manifolds. The two crucial i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007